In-Vivo Visualization of Edinger's Comb and Wilson's Pencils

Andreas Horn, MD, PhD¹, Siobhán Ewert, MD¹,², Eduardo Alho, MD, PhD³, Markus Axer, PhD⁴, Helmut Heinsen, MD⁵, Erich T. Fonoff, MD, PhD³, Jonathan R. Polimeni, PhD⁶,⁷, Todd M. Herrington, MD, PhD²

1) Department of Neurology, Neuromodulation and Movement Disorders Unit, Charité – University Medicine (CCM), Berlin, Germany
2) Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA. USA.
3) Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
4) Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Germany
5) Morphological Brain Research Unit, Department of Psychiatry, University of Würzburg, Würzburg, Germany
6) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
7) Department of Radiology, Harvard Medical School, Boston, MA, USA

Manuscript metrics
Title character count: 53; Number of references: 2; Number of tables: 0; Number of figures: 2; Word count text: 98; Word count figure legend 1: 40; Word count figure legend 2: 50

Corresponding Author
Andreas Horn, MD, PhD
Department for Neurology, Neuromodulation and Movement Disorders Unit
Charité – University Medicine (CCM)
Charitéplatz 1, 10117 Berlin, Germany
E-mail: andreas.horn@charite.de
Phone: +49 (0)30 450 660 294

Siobhán Ewert, MD: siobhan.ewert@charite.de
Eduardo Alho, MD, PhD: eduardoalho@hotmail.com
Markus Axer, PhD: m.axer@fz-juelich.de
Helmut Heinsen, MD: heinsen@mail.uni-wuerzburg.de
Erich T. Fonoff, MD, PhD: fonoffet@usp.br
Jonathan R. Polimeni, PhD: jonp@nmr.mgh.harvard.edu
Todd M. Herrington, MD, PhD: therrington@mgh.harvard.edu

Financial disclosure statement
Drs. Horn and Ewert report no conflicts of interest or relevant funding. Dr. Polimeni reports funding by NIH NIMH R01-MH111438 and NIBIB P41-EB015896 and by the Athinoula A. Martinos Center for Biomedical Imaging. Dr. Herrington reports funding by NINDS grant K23NS099380 and an American Academy of Neurology/American Brain Foundation Clinical Research Training Fellowship.

Author contributions
Drs. Horn and Herrington wrote the manuscript and performed analyses. Drs. Alho, Heinsen and Fonoff contributed the dark-field microscopy footage and revised the manuscript. Drs. Ewert and Polimeni acquired the dataset and revised the manuscript.

Search Terms: Pallidofugal system, pallidofugal pathway, direct pathway, indirect pathway, Parkinson's Disease, Dystonia, Deep Brain Stimulation, Edinger's comb, Wilson's Pencils
The "direct" and "indirect" pathways play crucial roles in movement disorder pathophysiology. Both traverse from the striatum to the internal pallidum and substantia nigra, the latter detouring to external pallidum and subthalamic nucleus. Anatomically, the pathways manifest within the striatofugal bundle that passes radially through the pallidum in form of pencil-like tracts (first described by Wilson1, fig. 1) before leaving the pallidum toward the substantia nigra in the form of a comb described by Edinger in 18962, fig. 2. A century later, these structures can be visualized in the living human brain (fig. 1 D; fig. 2 A).
Figures

Figure 1: Wilson's pencils. A) Histological depiction (image courtesy Dr. Michael Bonert, McMaster University, [CCBY-SA3.0](https://creativecommons.org/licenses/by-sa/3.0/)). B) Polarized light imaging in vervet monkey. C) First description by Wilson, Brain. D) Cardiac-gated T2*-weighted FLASH sequence acquired using 7 Tesla MRI showing Wilson’s pencils.
Figure 2: Edinger's comb. A) Cardiac-gated FLASH sequence showing Edinger's comb. B) First description: “The pedunculus cerebri is traversed by striatal fibers that enter dorsally and connect peduncle and tegmentum – Bundle between peduncle and tegmentum, comb system of the peduncle.”. C) Axial histological section in dark-field microscopy demonstrating the human comb system.
References
